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ABSTRACT

Attention is directed to the signal reflection gain and the
signal-to-image conversion gain in the quantum theory of
mixing. The theory gives two distinct types of solutions for the
minimum noise temperature of an SIS receiver. One has very
high IF conversion gain, and the returned signal and image
powers are extremely high as well. The other has moderate IF
conversion gain, but the returned powers tend to be very small.
This resolves a longstanding mystery.

INTRODUCTION

Classical mixer theory does not apply to heterodyne mixers
operating at a frequency o high enough that the voltage scale of
the resistive nonlinearity is comparable to or smaller than Aw/e.
Rather, the quantum theory of mixing [1] developed by J.R.
Tucker must be used. Tucker's theory is very successful in
predicting the behavior of superconductor-insulator-supercon-
ductor (SIS) quasiparticle mixers, the most sensitive receiving
devices in the vicinity of 100 to 300 GHz. We have attempted to
use the theory to determine the best performance which can be
expected from SIS receivers, with reasonable but optimistic
experimental constraints, over their entire frequency range of
operation. This project is not yet complete, but we report here
one striking result which should be considered by other
researchers who attempt to use the Tucker theory to simulate
their experimental results.

We find there are two distinct and disjoint types of "op-
timum" solutions. One has very high or infinite IF conversion
gain, and the "reflected” power (the signal reflection gain and the
signal-to-image conversion gain) is very high as well. The other
has moderate IF conversion gain, but the reflected power tends
to be very small. For a wide range of experimental parameters
the high gain solution gives the lowest receiver noise tempera-
ture. Nevertheless, the high gain solution is likely not accessible
in real experiments. Therefore, eliminating the high gain
solution should give much better agreement with experiments.
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CALCULATIONS

We have used the quantum mixer theory for extensive
numerical calculations, to determine the minimum value of the
SSB (single sideband) recgiver noise temperature at each
frequency, subject to reasonable experimental constraints.
Because the noise temperature of a receiver is

Tr = Ty + LT, (¢))

the calculation involves a trade-off between minimizing the
mixer noise temperature, Ty, and minimizing the mixer conver-
sion loss, L, which is mediated by the noise temperature of the
IF amplifier, Tip. Full details of these calculations will appear
elsewhere. For our current purpose we make the following
approximations: We consider DSB (double sideband) operation
in the three-frequency low-IF approximation, which should be a
fairly good representation of most well-designed experimental
mixers. We do not include any interference from the Josephson
effect, although this is likely to be a problem for experiments at
the higher frequencies. In addition, we ignore all reactances.
Taken together, these approximations are equivalent to assuming
1) that the geometrical capacitance of the SIS junction is large
enough to both short out the L.O harmonics and their sidebands
and to eliminate Josephson interference, 2) that the capacitance
is itself resonated by a relatively broadband external tuning
circuit, so that the intrinsic junction nonlinearity is presented
with a resistive embedding impedance at all relevant frequencies,
and 3) that the quantum susceptance has no significant effect.
This third assumption is controversial. It has recently been
argued that the quantum susceptance is a central element of the
behavior of SIS mixers [2]. Nevertheless, we believe that this
nonlinear reactance has little effect on the performance of an
optimized SIS receiver, although it may affect the optimum bias
point. This question will be addressed in further research.

The equations employed in the calculation of Ty are taken
from Ref. [1]. For brevity only those discussed in this paper are
presented here. The SSB IF conversion loss (inverse conversion
gain) of a DSB SIS mixer in the three-frequency low-IF approx-
imation, ignoring reactances, can be written in the novel form:
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L depends upon G, the source conductance seen by the SIS
junction at the signal and the image frequencies, and upon the
load conductance G which represents the conductance of the IF
amplifier circuitry as seen by the junction. The dependence of L
upon Gg in Eq. 2 is given by a simple impedance matching
formula which has its minimum at Gg = IGgl. The quantity Gs,
which can be negative, is equal to the input conductance of a
mixer for the unusual case of a DSB signal resulting from an
amplitude modulation of the LO. Note that Gg is not the input
conductance of our mixer. (The simple amplitude modulation
model of the SIS mixer is described in Ref. [1], Sec. IILB.)
We will also refer to the input conductance of the mixer at the
local oscillator frequency a,

Gid = Io/Vio = Gu1 - Gi-1, @

where I; o and Vo are the amplitudes of the current and voltage
across the junction at frequency o. Of course Grp > 0.

Equations 2 - 4 are expressed in terms of the elements of
the small-signal conductance matrix, Gj;. Each Gjjis evaluated
as an infinite sum over index n of the currents Iy = Igc(Vn)
weighted by a combination of Bessel functions of argument
o = eVpo/hw, where Igc(V) is the unmodulated dc I-V charac-
teristic of the SIS junction, Vy = Vg + nhw/e, and Vo is the dc
bias voltage.

The mixer noise temperature Ty includes the shot noise
calculated according to [1] and the thermal noise from the image
termination. The latter does not depend upon any of the oper-
ating parameters of a DSB mixer and hence does not influence
the receiver optimization. For convenience we assume zero
physical temperature so the thermal noise simply reduces to the
quantum noise temperature of the mixer, hw/2k. In this paper
we ignore the thermal noise from the IF termination which is
reflected from the mixer back into the IF amplifier. For real SIS
receivers this can be an important contribution to the total noise.

We pay close attention to the reflected power. It is known
that a good quality SIS junction can give infinite gain at frequen-
cies up to twice the effective energy gap frequency. Although
this might seem advantageous in the context of Eq. 1, when the
IF conversion gain is infinite the output power at all sideband
frequencies is infinite as well [3], clearly an unstable situation.
Reference [4] shows that SIS mixers can be unstable in a wide
range of circumstances. For our mixer the signal reflection gain
and the signal-to-image conversion gain are respectively:
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Fig. 1. Three synthetic normalized I-V characteristics used for
these calculations.

There has been little appreciation of [fg and [y in the
literature. An exception is Ref. [5], which enforced an
approximate signal input impedance match. But to our
knowledge the present paper is the first to mention the signal-to-
image conversion gain of an SIS mixer in any context.

We use the equations of the quantum theory of mixing to
determine the minimum noise temperature of the SIS receiver at
each frequency. At each frequency the optimum values of G,
Vo, and « are calculated given discrete values for the remaining
parameters, We have performed these calculations for a wide
range of parameters, but only a few of the results can be presen-
ted here. The illustrations given in this paper use the synthetic
SIS junction I-V curves depicted in Fig. 1. Most of our results
pertain to the "sharp" curve, corresponding to the best experi-
mental SIS I-V curves; the "medium" curve corresponds to a
good quality junction and the "dull” curve corresponds to a
moderate quality junction. We normalize voltages to the energy
gap voltage Vg, conductances to the normal state resistance Ry,
and frequencies to the energy gap frequency wg = eVg/h.

RESULTS

The dotted curve of Fig. 2 shows the minimum theoretical
noise temperature of an SIS receiver using the "sharp” I-V
curve, with G, = 0.3/RN, Tir = 3 K, and Vg = 3 mV, for
frequencies up to @ = 0.2 og. The smoothness of this curve
hides the fact that it includes two distinct and disjoint types of
behavior. The thick lines in Fig. 3 represent the three corres-
ponding small-signal gains. Itis seen that [z is extremely high,
and 5 and [3; are even higher, for normalized frequencies
between 0.03 and 0.12. For other frequencies [y is more
moderate but still sizable, while g and [ are quite small,
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Fig. 2. The SSB noise temperature of a DSB SIS receiver
optimized at each frequency. The computation uses the "sharp”
I-V curve of Fig. 1, GL = 0.3/RN, Tir = 3 K, and Vg =3 mV.
The dotted curve is the universal minimum of Tg, the dashed
curve is calculated with the constraint G¢ > 0, and the solid
curve is calculated with the constraint g, Iy < 1/4.

The solid curve of Fig. 2 shows the minimum theoretical
noise temperature of the SIS receiver calculated using exactly the
same parameters as the dotted curve, but subject to the constraint
Gs» G1 < 1/4, corresponding to a VSWR of 3. The thin lines in
Fig. 3 represent the three corresponding small-signal gains. Itis
clear that the reflected power constraint eliminates the high gain
solution and allows the moderate gain solution to extend
continuously across the entire frequency region.

This illustrates a general feature of our results: For a wide
range of parameter values there are two distinct minima for Tg.
One has very high or infinite IF conversion gain, and the
reflected power is very high or infinite as well. The other has
moderate IF conversion gain, but the reflected power tends to be
very small. Our minimization routine selects the lower of the
two minima. (Frequently the two minima overlap in parameter
space, but this has no substantial effect on our argument.)

Another general feature of our results is that if care is taken
to eliminate the high gain solutions, the optimum Tg is then quite
insensitive to the level of reflected power allowed. Figure 2
illustrates this. The dashed curve is computed with the require-
ment Gg > 0 (the high gain solutions generally but not always
have Gg < 0). Even though for this calculation F (not shown)
reaches as large as 0.78, Fig. 2 shows that the optimum Tg is
nearly the same as the solid curve for which [j; < 0.25. In fact,
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Fig. 3. The thick lines represent the IF conversion gain [,
the signal reflection gain [g, and the signal-to-image conversion
gain [, which correspond to the dotted curve of Fig. 2. The
thin lines represent the gains which correspond to the solid curve
of Fig. 2,

for the parameters used for Figs. 2 and 3, any reasonable
constraint on the maximum allowed g and [, from 0.1 to 10,
serves to eliminate the high gain solutions but has very little
effect on the moderate gain solutions.

Although we have used particular parameter values in
Figs. 2 and 3 for illustration, the behavior described is quite
widespread. For instance, for the "medium" I-V curve of Fig. 1
with Tig = 10 K, the high gain solution predominates for
frequencies between o = 0.15 ag and 0 = 0.40 ag.

DISCUSSION

We understand our results in the following way. Tm and
L in Eq. 1 are in general slowly varying functions of their
various parameters. The exception is that if it is possible for Gg
to be negative the quantity Gg+Gg can go to zero, giving analyt-
ically infinite [y in Eq. 2. Near exact cancellation occurs over
only a small region of parameter space. Thus we can picture a
display of Tg in a multi-parameter space as having a rather sharp
minimum near G¢+Gg = 0 and more gradual behavior, including
a broad minimum, elsewhere. These two minima correspond to
our two solutions. Near Gg+Gg =0 both Jj5 and y will be very
large (cf. Eqs. 5 and 6). If the vicinity of Gg+Gg = 0 is
forbidden (by constraining G and §p), the remaining minimum
will be quite insensitive to the operating parameters.



This analysis supports our belief that, were we to include
the quantum susceptance and a tuning susceptance in our
calculations, the result would be very much the same. Including
these reactive terms, a quantity exactly analogous to Gg+Gg
(denoted D in Ref. [3]) can go to zero giving analytically infinite
Gir as well as infinite [5 and §y [3], and thus the above para-
graph still applies. It is known that the quantum susceptance
widens the range of possibility of infinite gain in SIS mixers [2],
so that infinite gain can be predicted for instance for poorer
quality I-V curves and over a wider frequency range. This
should underline the importance of removing the high gain
solutions in computer simulations.

Note in Fig. 3 that Jy is everywhere larger than [75. This
is true for all of our simulations: for an optimized SIS receiver
there is always more power returned to the source at the image
frequency than at the signal frequency! We do not know the
physical reason for this. Mathematically, it is clear from
inspection of Egs. 5 and 6 that this is a simple consequence of
the fact that the optimum Gg is always intermediate between G
and Gg. In fact Fg can be extremely small while Fp is still
sizable, as at low frequencies in Fig. 3. Thus it is crucial to
consider [y as well as [

Our simulations make it clear that the high gain solutions
should not be experimentally accessible. The very large returned
power would make the mixer extraordinarily sensitive to small
variations in the signal and image terminations. The high output
power (at higher sideband frequencies as well, unless they are
perfectly terminated) is extremely conducive to mixer saturation.
The sensitivity of the high gain solutions to mixer operating
parameters implies that these solutions will be obliterated by
noise and other processes. It is likely that the high gain solution
is a mere mathematical curiosity, forgoing a direct experimental
assault.

We believe that this resolves a mystery. From the earliest
attempts [6], the best experimental SIS mixers have had low to
moderate conversion gain, but optimized computer fits to these
experiments often predict very high to infinite gain. On the
contrary, nonoptimized fits using independently determined
parameters can be fairly successful [7,8]. Since the high gain
solutions are not accessible, constraining the reflected power in
computer fitting should give much better agreement with
experiments.

CONCLUSION

It is important to consider the signal reflection gain and
especially the signal-to-image conversion gain in computer
simulations of SIS mixers. The computed minimum receiver
noise temperature often entails extremely high signal and image
returned power, and this type of solution is likely inaccessible in
real experiments. If the high gain solutions are eliminated, it is
possible to have very low returned power with little increase in
noise temperature.
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