
MM-5

Reflected Power Effects in Computer Simulations Using the

Quantum Theory of Mixing

Qing Kel and M. J. Feldman2

PhysicsDqw@nimtl andDepartment of Electrical Engineering
University of Rochester, Rochester, NY 14627

ABSTRACT

Attention is directed to the signal reflection gain anct the

signal-to-image conversion gain in the quantum theory of
mixing. The theory gives two distinct types of solutions for the

minimum noise temperature of an S1Sreceiver. One has very
high IF conversion gain, and the returned signal and image
powers are extremely high as well. The other has moderate IF
conversion gain, but the returned powers tend to be very small.
This resolves a longstanding mystery.

INTRODUCTION

Classical mixer theory does not apply to heterodyne mixers
operating at a frequency ashigh enough that the voltage scale of
the xtxistive nonlinearity is comparable to or smaller than h~e.
Rather, the quantum theory of mixing [1] developed by J.R.
Tucker must be used. Tucker’s theory is very successful in
predicting the behavior of superconductor-insulator-supercon-
ductor (S1S) quasipaxticle mixers, the most sensitive receiving
devices in the vicinity of 100 to 300 GHz. We have attempted to

use the theory to determine the best performance which cart be
expected from S1S receivers, with reasonable but optimistic
experimental constraints, over their entire frequency range of
operation. This project is not yet complete, but we report here
one striking result which should be considered by other
researchers who attempt to use the Tucker theory to simulate
their experimental nxdts.

We find there are two distinct and disjoint types of “op-
timum” solutions. One has very high or infinite IF conversion

gain, and the “reflected” power (the signal reflection gain and the

signal-to-image conversion gain) is very high as well. The other

has moderate IF conversion gain, but the reflected power tends

to be very small. For a wide range of experimental parameters

the high gain solution gives the lowest receiver noise tempera-

ture. Nevertheless, the high gain solution is likely not accessible

in real experiments. Therefore, eliminating the high gain

solution should give much better agreement with experiments.

CALCULATIONS

We have used the quantum mixer theory for extensive

numerical calculations, to determine the minimum value of the

SSB (single sideband) receiver noise temperature at each

frequency, subject to reasonable experimental constraints.

Because the noise tempemture of a teceiver is

TR=TNt+LTIF, (1)

the calculation involves a trade-off between minimizing the

mixer noise temperature, TM, and minimizing the mixer conver-

sion loss, L, which is mediated by the noise temperature of the

IF amplifier, TE. Full details of these calculations will appear

elsewhere. For our current purpose we make the following

approximations We consider DSB (double sideband) operation

in the three-frequency low-IF approximation, which should be a

fairly good representation of most well-designed experimental

mixers. We do not include any interference from the Josephson

effect, although this is likely to be a problem for experiments at

the higher frequencies. In addition, we ignore all rcactances.

Taken together, these approximations are equivalent to assuming

1) that the geodetical capacitance of the S1S junction is large

enough to both short out the LO harmonics and their sidebands

and to eliminate Josephson interference, 2) that the capacitance

is itself resonated by a relatively broadband external tuning

circuit, so that the intrinsic junction nonlinearity is presented

with a mistive embedding impedance at all relevant !kquettcies,

and 3) that the quantum susceptance has no significant effect.

This third assumption is controversial. It has recently been

argued that the quantum susceptance is a central element of the

behavior of S1S mixers [2]. Nevertheless, we believe that this

nonlinear reactance has Iiule effect on the performance of an

optimized S1S receiver, although it may affect the optimum bias

point. This question will be addressed in further research.

The equations employed in the calculation of TIt are taken

fmm Ref. [1]. For brevity only those discussed in this paper an?

presented here. The SSB IF conversion loss (inverse conversion

gain) of a DSB S1S mixer in the three-frequency low-IF approx-

imation, ignoring reacmnces, can be vmitten in the novel form
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L depends upon G~, the source conductance seen by the S1S

junction at the signal and the image frequencies, and upon the
load conductance GL which represents the conductance of the IF

amplit%r circuitry as seen by the junction. The dependence of L

upon Gs in Eq. 2 is given by a simple impedance matching

formula which has its minimum at Gs = lGd. The quantity G:,

which can be negative, is equal to the input conductance of a

mixer for the unusual case of a DSB signal resulting from an

amplitude modulation of the LO. Note that G; is ~ the input

conductance of our mixer. (The simple amplitude modulation

model of the S1S mixer is described in Ref. [1], Sec. 111.B.)

We will also refer to the input conductance of the mixer at the

local oscillator frequency 0,

G& = IdVLO = Gll - G1.I , (4)

where 1~ and VD are the amplitudes of the carrent and voltage

across the junction at ftequency m Of course G& >0.

Equations 2-4 are expressed in terms of the elements of

the small-signal conductance matrix, Gij. Each Gij is evaluated

as an infinite sum over index n of the currents In = Idc(Vn)

weighted by a combination of Bessel functions of argument

a = eVL@kO, where Idc(V) is the unmodulated dc I-V charac-

teristic of the S1S junction, Vn = Vo + fide, and Vo is the dc

bias voltage.

The mixer noise temperature TM includes the shot noise

calculated according to [1] and the thermal noise from the image

termination. The latter does not depend upon any of the oper-

ating parameters of a DSB mixer and hence does not influence

the receiver optimization. For convenience we assume zero

physical temperature so the thermal noise simply reduces to the

quantum noise temperature of the mixer, ho/2k. In this paper

we ignore the thermal noise from the IF termination which is

reflected from the mixer back into the IF amplifier. For real S1S

receivers this can bean important contribution to the total noise.

We pay close attention to the xeflected power. It is known

that a good quality S1S junction can give infiiite gain at frequen-

cies up to twice the effective energy gap frequency. Although

this might seem advantages in the context of Eq. 1, when the

IF conversion gain is infinite the output power at all sideband

frequencies is infinite as well [3], clearly an unstable situation.

Reference [4] shows that S1S mixers can be unstable in a wide

range of circumstances. For our mixer the signal reflection gain

and the signal-to-image conversion gain me respectively

(5)

(6)
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Fig. 1. Three synthetic normalized I-V characteristics used for

these calculation;.

There has been little appreciation of ~s and ~1 in the

literature. An exception is Ref. [5], which enforced an

approximate signal input impedance match. But to our

knowledge the present paper is the fmt to mention the signal-to-

image conversion gain of an S1S mixer in any context.

We use the equations of the quantum theory of mixing to

determine the minimum noise temperature of the S1S receiver at

each frequency. At each frequency the optimum values of Gs,

VCI, and a are calculated given discrete values for the remaining

parameters. We have performed these calculations for a wide

range of parameters, but only a few of the results can be presen-

ted here. The illustrations given in this paper use the synthetic

S1S junction I-V curves depicted in Fig. 1. Most of our results

pertain to the “sharp” curve, corresponding to the best experi-

mental S1S I-V curves the “medium” curve corresponds to a

good quality junction and the “dull” curve corresponds to a

moderate quality junction. We normalize voltages to the energy

gap voltage Vg, conductance to the normal state resistance RN,

and frequencies to the energy gap frequency og = eV@.

RESULTS

The dotted curve of Fig. 2 shows the minimum theoretical

noise temperature of an S1S receiver using the “sharp” I-V

cuwe, with GL. = 0.3/RN, ‘1’IF = 3 K, and Vg = 3 mv, for

frequencies up to o = 0.2 @g. The smoothness of this curve

hides the fact that it includes two distinct and disjoint types of

behavior. The thick lines in Fig. 3 represent the three corres-

ponding small-signal gains. It is seen that ~ is extremely high,

and ~s and ~1 are even higher, for normalized frequencies

between 0.03 and 0.12. For other frequencies ~lF is more

moderate but still sizable, while ~s and ~ axe quite small.
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Fig. 2. The SSB noise temperature of a DSB S1S receiver
optimized at each ffequency. The computation uses the “sharp”
I-V cmve of Fig. 1, GL = 0.3&, TIF = 3 K, and V = 3 mV.
The dotted curve is the universal minimum of Tit, &e dashed

curve is calculated with the constraint G: > 0, and the solid
curve is calculated with the constraint ~s, ~ < 1/4.

The solid curve of Fig. 2 shows the minimum theoretical

noise temperature of the S1S teceiver calculated using exactly the

same parameters as the dotted curve, but subject to the constraint

$s, ~K S V49 correspondingto a VSWR of 3. The thin lines in

Fig. 3 represent the three corresponding small-signal gains. It is

clear that the reflected power constraint eliminates the high gain

solution and allows the moderate gain solution to extend

continuously across the entire frequency region.

This illustrates a general feature of our resultx For a wide

range of parameter values there are two distinct minima for TR.

One has very high or infinite IF conversion gain, and the

reflected power is very high or infinite as well. The other has

moderate IF conversion gain, but the reflected power tends to be

very small. Our minimization routine selects the lower of the

two minima. (l%equently the two minima overlap in parameter

space, but this has no substantial effect on our argument.)

Another general feature of our results is that if care is taken

to eliminate the high gain solutions, the optimum TR is then quite

insensitive to the level of reflected power allowed. Figure 2

illustrates this. The dashed curve is computed with the require-

ment G; >0 (the high gain solutions generally but not always

have G;< O). Even though for this calculation ~1 (not shown)

reaches as large as 0.78, Fig. 2 shows that the optimum TR is

nearly the same as the solid curve for which ~ s 0.25. In facL
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Fig. 3. The thick lines represent the IF conversion gain ~,

the signal reflection gain ~s, and the signal-to-image conversion

gain ~1, which correspond to the dotted curve of Fig. 2. The

thin lines represent the gains which correspond to the solid curve
of Fig. 2.

for the parameters used for Figs. 2 and 3, any reasonable

constraint on the maximum allowed ~s and 5, horn 0.1 to 10,

serves to eliminate the high gain solutions but has very little

effect on the mderate gain solutions.

Although we have used particular parameter values in

Figs. 2 and 3 for illustration, the behavior described is quite

widespread. For instance, for the “medium” I-V curve of Fig. 1

with TIF = 10 K, the high gain solution predominates for

frequencies between o = 0.15 tog and o = 0.40 og

DISCUSSION

We understand our results in the following way. TM and

L in Eq. 1 are in general slowly varying functions of their

various parameters. The exception is that if it is possible for G~

to be negative the quantity Gs+G( can go to zero, giving analyt-

ically infinite ~ in Eq. 2. Near exact cancellation occurs over

only a small xegion of parameter space, Thus we can picture a

display Of TR in a mtdti-pammeter space as having a rather sharp

mitdmum near Gs+G; = O and more gradual behavior, including

abroad minimum, elsewhere, These two minima correspond to

our two solutions. Near Gs+G~ = O both ~s and ~ will be very

large (cf. Eqs. 5 and 6). If the vicinity of Gs+Gi = O is
forbidden (by constraining ~s and ~), the remaining tiimum

will be quite insensitive to the operating parameters.
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This analysis supports our belief tha~ were we to include

the quantum susceptartce and a tuning susceptance in our

calculations, the tesult would be very much the same. Including

these reactive terms, a quantity exactly analogous to Gs+G;

(denoted Din Ref. [3]) cart go to zero giving analytically infbtite

~w as well as infiite ~~ and ~ [3], artd thus the ahove para-

graph still applies. It is known that the quantum susceptance

widens the range of possibility of infinite gain in S1S mixers [2],
so that infinite gain can be predicted for instance for poorer

quality I-V curves and over a wider frequency range. This

should underline the importance of removing the high gain

solutions in computer simulations.

Note in Fig. 3 that ~1 is everywhere larger than ~s. This

is true for all of our simulations: for an optimized S1S receiver

there is always mote power returned to the source at the image

frequency than at the signal frequency! We do not know the

physical reason for this. Mathematically, it is clear from

inspection of Eqs. 5 and 6 that this is a simple consequence of

the fact that the optimum Gs is always intermediate between G&

and G;. Jn fact ~s can be extremely small while ~1 is still

sizable, as at low frequencies in Fig. 3. Thus it is crucial to

consider ~1 as well as Es.

Our simulations make it clear that the high gain solutions

should not be experimentally accessible. The very large returned

power would make the mixer extraordinarily sensitive to small

wuiations in the signrd and image terminations. The high output

power (at higher sideband frequencies as well, unless they are

perfedy terminated) is extremely conducive to mixer saturation.

The sensitivity of the high gain solutions to mixer operating

parameters implies that these solutions will & obliterated by

noise and other processes. It is likely that the high gain solution

is a mere mathematical curiosity, forgoing a direct experimental

assault.

We believe that this resolves a mystery. From the earliest

attempts [6], the best experimcntrd S1S mixers have had low to

moderate conversion gain, but optimized computer fits to these

experiments often predict very high to infinite gain. On the

contrary, nonoptimized fits using independently determined

parameters can be fairly successful [7,8]. Since the high gain

solutions are not accessible, constraining the reflected power in

computer fitting should give much better agreement with

experiments.

CONCLUSION

It is important to consider the signal reflection gain and

especially the signal-to-image conversion gain in computer

simulations of S1S mixers. The computed minimum receiver

noise temperature often entails extremely high signal and image

returned power, and this type of solution is likely inaccessible in

reaJ experiments. If the high gain solutions are eliminated, it is

possible to have very low returned power with litde incnxse in

noise temperature.
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